- TRIFL $=\mathbf{X}$
 INTERNATIONAL Façades solutions

Introduction

In 2007 Triflex International corner stone has been laid by its founder Eng. Ahmed Abo Elmagd.

Since then Eng. Abo Elmagd selected the best experienced engineers and the most efficient manpower to provide what he believes in (Excellence and Beyond).

Triflex International excelled in implementing the most accurate facade works within various sectors available in the market, whether local or imported sectors.

And Triflex International carried out successfully many projects of all types of buildings covering all sectors (administrative, residential, commercial, hospitality, health care, governmental, services, charity, etc.)

In 2010, Chairman of the Board Eng. Ahmed Abo Elmagd laid the corner stone for the first factory of the company to manufacture all the needs of customers, including doors, windows, partitions, roofs and facades using various aluminum sectors considering the best raw materials and most accurate installations, taking into consideration the company's local and international experiences.

This gave Triflex International the preference to represent the best manufacturers of aluminum and glass sectors locally and internationally since 10 years and more.

2012/2013, after Triflex International spread all over the nation, the company proceeded its `management, sales, technical and marketing experienced calibers from all over the world, in order to ensure the efficiency of the implemented projects.

Finally, during the past few years 2016-2020, despite the difficulties and crises that the country and the whole world went through, hard work and exceptional projects continued without interruption, because Triflex International has a vision, mission, and values that have never been and will never be abandoned by any member of Triflex International family.

Vision - Mission - Values

Vision

As our accumulative experience in façade solutions qualifies us to expand and develop continuously, we've got the vision to lead the aluminum manufacturing sector not only in Egypt but international wise.
Our aim not to be the first company, we aim to be the only providers of exceptional façade solutions.

Mission

We believe we have to improve people's lives by enhancing their building's performance.
We enhance building's performance by providing solutions with high aesthetic results in accordance to the latest architectural trends.
We provide façade that are energy efficient through our latest products of thermal and acoustic insulation and basically sun shading systems.
We secure façade levels against burglaries, fire, smokes, dust, and weather conditions. We provide façade with renewable energy.

Values

Triflex International has nonnegotiable values

- Honesty	: with our customers.
- Loyalty	: to our community.
- Commitment	: to highest standards.
- Perseverance	: to work hard.
- Insistence	: to be the only one not just the first.

Building façade is a building enclosure which is all of the elements of the outer shell that maintain a dry, heated or cooled indoor environment and facilitates its climate control.

Building envelop design is a specialized area of architectural and engineering practice that draws from all areas of building science and indoor climate control.

The many functions of the building envelope can be separated into three categories

- Support (to resist and transfer structural and dynamic loads)
- Control (the flow of matter and energy of all types)
- Finish (to meet desired aesthetics on the inside and outside
- The control function is at the core of good performance, and in practice focuses, in order of importance, on rain control, air control, heat control, and vapor control.

Aluninum curtain walls

\mathbb{Q}
0
0
0
0
0
3
0
0
0
0
7
∞
0

Structure Glazing

0
0
0
0
0
0
0

Aluminum Wirdow, Doors \& Loveres

1 0
0
0
2
2
0
0

Aluminum Sylightits \& Roofightis

Balustrades \& Handrails

\mathbb{Z}
0
0
0
0
0

Cladding

1
0
0
0
0
0
0
-1

\mathbb{Q}
Q
0
0
0
0
 0
0
2
2
0
$\frac{2}{2}$
$\frac{2}{2}$

Partitioning

$17 \mid$

\mathbb{Q}
0
0
0
0
$\underset{\sim}{0}$
0
0
0
0
2
7
0
0

Suspended Glass (Spider)

19 |

TF \triangle P

\mathbb{Q}
0
0
0
0
0

Fly Screens

21

Alumil

M900 AERO
 Cost-effective product line for sliding frames

Basic characteristics:

$\checkmark \quad$ Intended for small to medium size openings
$\checkmark \quad 28 \mathrm{~mm}$ sash width
$\checkmark \quad$ Supports all sliding systems' typologies
\checkmark Offers basic impermeability and sound insulation
$\checkmark \quad$ Cooperates perfectly with the M940 Mini "tilt-and-turn" system
\checkmark Supports glazing between 6 mm and 19 mm

PROFILE TECHNICAL SPECIFICATIONS	
Extruded Alloy	AI Mg Si 0,5 F22 (6063) DIN 1725
Hardness	$12-14 \mathrm{HB}$
Minimum Powder Coating Thickness	$60-90$ microns
Profile Thickness (min-max)	$1,3-1,6 \mathrm{~mm}$
Profile Geometry Control	DIN 17615 Compliant

TECHNICAL CHARACTERISTICS OF TYPOLOGIES

TECHNICAL CHARACTERISTICS OF TYPOLOGIES	
Sash Dimensions (Width\Height)	$28 / 61 \mathrm{~mm}$
Sliding Movement	Single or double Teflon roller
Glazing Type	Single or double, up to 19 mm
Glazing Weight	Up to 80 kg with double roller Perimetrical, with two rows of high density brushes
Sealing	

Product Line Construction Options:

\checkmark Interlocking (with or without a fly-screen)
\checkmark Internal Fusible (glazing or glazing with shutter or glazing with shutter and fly-screen)
\checkmark External Fusible (glazing or glazing with shutter or glazing with shutter and fly-screen)

Certifications:

\checkmark The design, the production process, and the quality control of all profiles produced by Alumil are certified with ISO 9001.
\checkmark The process of electrostatic powder coating is certified by QUALICOAT and GSB in all plants operated by Alumil.

ALUMiL:M9ுロ Mini

The smallest and lightest product line for "tilt-and-turn" frames

Basic characteristics:
$\checkmark \quad 37 \mathrm{~mm}$ sash width
\checkmark "ALUSEAL" perimetrical sealing system, with three levels of EPDM gaskets.
\checkmark Supports all "tilt-and-turn" typologies.
\checkmark Cooperates perfectly with the M900 Aero for sliding fames.
\checkmark Supports single or double glazing, from 10 to 26 mm .

PROFILE TECHNICAL SPECIFICATIONS	
Extruded Alloy	AlMgSiO.5 6063
Hardness	$12-14 \mathrm{HB}$
Minimum Powder Coating Thickness	$0,75 \mathrm{~mm}$
Profile Thickness (min-max)	
Profile Geometry Control	DIN 17615 Compliant

PRODUCT LINE TECHNICAL CHARACTERISTICS	
Basic Sash Width (Actual/Effective)	$44 \backslash 37 \mathrm{~mm}$
Glazing Type	Single or Double, from 10 to 26 mm
Glazing Weight	"ALUSEAL" perimetrical sealing system, with three levels of EPDM gaskets
Sealing	

Construction options:
\checkmark One or two-sash doors and windows, with or without shutters.
\checkmark Main entrances.
\checkmark Profiles for angular constructions and other special applications.
\checkmark Perfect cooperation with Alumil's M900 Aero for sliding fames

Certifications:

\checkmark The design, the production process, and the quality control of all profiles produced by Alumil are certified with ISO 9001.
\checkmark The process of electrostatic powder coating is certified by QUALICOAT and GSB in all plants operated by Alumil.

M9200 EXCLUSIVE

Product line for sliding windows, with distinctive curved appearance.

PROFILE TECHNICAL SPECIFICATIONS	
Extruded Alloy	AI Mg Si O.5 6063
Hardness	$12-14 \mathrm{HB}$
Minimum Powder Coating Thickness	$60-90$ microns
Profile Thickness (min-max)	$1,3-1,6 \mathrm{~mm}$
Profile Geometry Control	DIN 17615 Compliant

PRODUCT LINE TECHNICAL CHARACTERISTICS	
Sash Dimensions (Width\Height)	38182 mm
Sliding Movement	Single or Double teflon roller
Glazing Type	Single or Double, up to 20 mm
Glazing Weight	Up to 120 Kg with a double roller Perimetrical, with two rows of high- density brushes
Sealing	

Product Line Construction Options:

\checkmark Interlocking (with or without a fly-screen)
\checkmark Internal Fusible (glazing or glazing with shutter or glazing with shutter and fly-screen)
\checkmark External Fusible (glazing or glazing with shutter or glazing with shutter and fly-screen)

Certifications:

\checkmark The design, the production process, and the quality control of all profiles produced by \checkmark Alumil are certified with ISO 9001
\checkmark The process of electrostatic powder coating is certified by QUALICOAT and GSB
\checkmark In all plants operated by Alumil.

slumil:M9ுロ0 Softline plus

M 9400 SOFTLINE PLUS

Product lines for "tilt-and-turn" frames, with a 45 mm sash and wide variety of supported typologies.

Basic characteristics:
$\checkmark \quad 45 \mathrm{~mm}$ basic sash width
\checkmark "ALUSEAL" impermeability and water-tightness system
\checkmark Large design variety, offering many aesthetic alternatives for both internal and external frame surfaces.
\checkmark Specially-designed profiles for wood-alike frame construction.
\checkmark Variety of profiles, supporting all "tilt-and-turn" typologies.
M9400

TECHNICAL SPECIFICATION OF PROFILES	
Aluminum alloy	AlMgSi 0.5 F22 6063 (DIN 1725)
Hardness	$12-14 \mathrm{HB}$
Minimum Powder Coating Thickness	$0,75 \mathrm{~mm}$
Profile thickness (min-max)	$1,8-5,0 \mathrm{~mm}$
Profile Geometry Control	DIN 17615 Compliant

TECHNICAL SPECIFICATIONS OF SYSTEM TYPOLOGIES	
Basic sash width	45 mm
Glazing types	Single or double, from 10 up to 32 mm
Maximum glazing weight	75 kg using a plain hinge
	130 kg using heavy-load hinges
Sealing	"ALUSEAL" system, with EPDM gaskets
	applied in 3 levels.
	Class C (DIN 18055)

Certifications:

\checkmark The design, the production process, and the quality control of all profiles produced by Alumil are certified with ISO 9001.
\checkmark The process of electrostatic powder coating is certified by QUALICOAT and GSB in all plants operated by Alumil.
\checkmark M9400 SOFTLINE PLUS is certified by the globally-acknowledged German institute IFT ROSENHEIM, achieving Gruppe C (DIN18055) impermeability classification.

Product line for accordion doors, distincted by its low accessories' cost and its fast and easy fabrication methodology.

Basic characteristics:
$\checkmark \quad 50 \mathrm{~mm}$ sash width
\checkmark Combination of teflon sliding roller and sash-connecting hinge into a single accessory, able to support 250 Kg (125 Kg per sash)
\checkmark Sealing with both EPDM gaskets and high-density brushes
\checkmark Low threshold for comfortable access and passage
\checkmark Availability of locking door construction, opening inwards or outwards
\checkmark Supports constructions with theoretically infinite sashes, surpassing restrictions that were present in accordion doors with traditional external mechanisms (i.e short external guides, substantial cost increase for every extra sash, etc)
\checkmark Includes special leveling profiles, which adjust the construction to the walls' slope
\checkmark Supports single, double or triple glazing, from 24 up to 32 mm

TECHNICAL SPECIFICATIONS OF PROFILES	
Aluminum alloy	AlMgSi0.5 F22 6063 (DIN 1725)
Hardness	$12-14 \mathrm{HB}$
Minimum Powder Coating Thickness	$0,75 \mathrm{~mm}$
Profile thickness (min-max)	$1,4-1,8 \mathrm{~mm}$
Profile Geometry Control	DIN 17615 Compliant

TECHNICAL SPECIFICATIONS OF SYSTEM TYPOLOGIES	
Basic sash width	50 mm
Glazing supported	Single, double or triple, from 24 up to 32 mm
Maximum glazing weight	250 Kg per roller (-hinge) thus 125 Kg per sash
Sealing	Two level sealing, using two rows of EPDM gaskets and/or high-density brushes

Construction options:

\checkmark Accordion doors, starting from at least three, and ending to a theoretically infinite number of sashes
\checkmark Option of both symmetrical and asymmetrical construction, limited only by an odd number of sashes in each folding side
\checkmark Option of installing "tilt-and-turn" sashes on the folding ones
\checkmark Availability of constructing sash partitions, using a " T " profile in the folding sashes
\checkmark Availability of shutter construction

Certifications:

\checkmark The design, the production process, and the quality control of all profiles produced by Alumil are certified with ISO 9001.
\checkmark The process of electrostatic powder coating is certified by QUALICOAT and GSB in all plants operated by Alumil.

feco

$\underset{\sim}{\Omega}$
$\stackrel{0}{2}$
$\stackrel{2}{2}$
$\stackrel{2}{2}$
$\stackrel{2}{2}$

feco

feco product overview

Product	Detail	Description	Wall thickness	Panel/Glass/ Door leaf thickness	Visible width vertical horizontal	$\begin{aligned} & \text { Sound } \\ & \text { insulation test } \\ & \text { values R } \end{aligned}$	Fire resistance
fecowand		Solid wall	105 mm	$2 \times 19 \mathrm{~mm}$	-	47.52 dB	$\begin{aligned} & \mathrm{E} 130 \\ & \mathrm{E} 190 \end{aligned}$
fecowand	$\frac{1 \pi}{x}$	Solid wall in special thickness	$\begin{aligned} & 125 \mathrm{~mm} \\ & 175 \mathrm{~mm} \end{aligned}$	$2 \times 19 \mathrm{~mm}$	-	47.57 dB	El30
fecoorga		Wall organisation	105 mm	$2 \times 19 \mathrm{~mm}$	-	$45-52 \mathrm{~dB}$	$\begin{aligned} & \text { El30 } \\ & \text { El90 } \end{aligned}$
fecophon		Acoustic solid wall	105 mm	$2 \times 19 \mathrm{~mm}$	-	27.49 dB	-
fecoplan		All-glass construction	35 mm	10.18 mm	0/50 mm	$35-42 \mathrm{~dB}$	-
fecocent		Wall-centered glazing	105 mm	$\begin{array}{r} 8 \mathrm{~mm} \\ 28 \mathrm{~mm} \end{array}$	$35 / 35 \mathrm{~mm}$	$\begin{aligned} & 32-37 \mathrm{~dB} \\ & 37.42 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { G30 } \\ & \text { F30 } \end{aligned}$
fecofix		Wall-flush glazing	105 mm	$\begin{aligned} & 1 \times 5-8 \mathrm{~mm} \\ & 2 \times 5-8 \mathrm{~mm} \end{aligned}$	20/20 mm	$\begin{aligned} & 32.37 \mathrm{~dB} \\ & 39.49 \mathrm{~dB} \end{aligned}$	F30
fecostruct		Face-flush glazing	105 mm	$\begin{aligned} & 1 \times 6.8 \mathrm{~mm} \\ & 2 \times 6.8 \mathrm{~mm} \end{aligned}$	20/20 mm	$\begin{aligned} & 32.37 \mathrm{~dB} \\ & 39.47 \mathrm{~dB} \end{aligned}$	-
fecotür Wood		Wooden doors	105 mm	$40-105 \mathrm{~mm}$	18.50 mm	23.42 dB	T30
fecotür Glass		Glassdoors	105 mm	$\begin{array}{r} 10 \mathrm{~mm} \\ 40-105 \mathrm{~mm} \end{array}$	18.50 mm	$\begin{aligned} & 23-32 \mathrm{~dB} \\ & 32.42 \mathrm{~dB} \end{aligned}$	-

The feco partition wall system is constantly being further developed.
Ask us about the latest innovations.

$31 \mid$
\square

PERFORMANCES

This table shows possible classes and values of performances. The values indicated in red are the ones relevant to this system.
(1) The Uf-value measures the heat flow. The lower the Ut-value, the better the thermal insulation of the frame.
(2) The sound reduction index (Rw) measures the capacity of the sound reduction performance of the frame.
(4) The water tightness testing involve volume of air that would pass through a closed window at a certain air pressure
(4) The water tightness testing involves applying a uniform water spray at increasing air pressure until water penetrates the window.
(5) The wind ioad resistance is a measure of the prome's structura strenth and is tested by applying increasing levels of air pressure to simulate the wind force.
(6) The burglar resistance is tested by statistical and dynamic loads, as well as by simulated attempts to break in using specified tools.

This table shows possible classes and values of performances. The values indicated in red are the ones relevant to this system.
(1) The Uf-value measures the heat fiow. The lower the Uf-value, the better the thermal insulation of the frame.
(2) The sound reduction index (Rw) measures the capacity of the sound reduction performance of the frame.
(3) The air tightness test measures the volume of air that would pass through a closed window at a certain air pressure.
(4) The water tightness testing involves applying a uniform water spray at increasing air pressure until water penetrates the window.
(5) The wind load resistance is a measure of the profie's structural strength and is tested by applying increasing levels of air pressure to simulate the wind force
(6) The burglar resistance is tested by statistical and dynamic loads, as well as by simulated attempts to break in using specified tools.

The unique MasterLine 8 windows concept offers up to 4 design variants, each with their own distinct look and feel, which make MasterLine 8 suitable for any architectural style.

Needless to say, MasterLine 8 can easily be integrated with other Reynaers Aluminium systems, such as CP 130 and CP 155 sliding systems, the RB glass balustrade, the Mosquito system, and curtain wall system CW 50.

The unique concept makes it possible to combine an extensive range of window opening types, design variants, and different levels of thermal insulation.
straightforward design of the MasterLine 8 Functional variant is beautiful in its simplicity, and is suitable for both
modern and contemporary buildings.

The MasterLine 8 Renaissance windows have been redesigned, more true to the traditional ogee detailing in heritage windows. The sash is recessed to the frame on the exterior side and the detailing is more refined.

MasterLine 8 Deco windows offer a modern, unique design that stands out and gives a contemporary feel. The sash is recessed to the frame on the exterior side and the sloped detailing brings a finepalette of reflections and shading.

PERFORMANCES											
ENERGY											
	Thermal Insulation windows EN ISO 10077-2	Uf-value down to $1.0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ depending on the frame/vent combination and the glass thickness.									
	Thermal Insulation doors EN ISO 10077-2	Uf-value down to $1.4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ depending on the frame/vent combination and the glass thickness.									
COMFORT											
	Acoustic performance windows EN ISO 140-3; EN ISO 717-1	$R w(C ; C t r)=45(-1 ;-4) d B$, Hidden Vent: Rw(C;Ctr $)=49(-1 ;-5) d B$, depending on glazing and opening type									
	Acoustic performance doors EN ISO 140-3; EN ISO 717-1	$R w(C ; C t r)=43(-1 ;-4) d B$, depending on glazing and opening type									
	Air tightness windows \& doors, max. test pressure ${ }^{(3)}$ EN 1026; EN 12207	$\begin{gathered} 1 \\ (150 \mathrm{~Pa}) \end{gathered}$			$\begin{gathered} 2 \\ (300 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 3 \\ (600 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 4 \\ (600 \mathrm{~Pa}) \end{gathered}$		
	Water tightness windows EN 1027; EN 12208	$\begin{gathered} 1 \mathrm{~A} \\ (0 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ (50 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 3 \mathrm{~A} \\ (100 \mathrm{~Pa}) \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \mathrm{~A} \\ (150 \mathrm{~Pa}) \end{array}$	$\begin{gathered} 5 \mathrm{~A} \\ (200 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} \\ (250 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 7 \mathrm{~A} \\ (300 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ (450 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 9 \mathrm{~A} \\ (600 \mathrm{~Pa}) \end{gathered}$	$\begin{aligned} & E 1200 \\ & (1200 \mathrm{~Pa}) \end{aligned}$
	Water tightness doors EN 1027; EN 12208	$\begin{gathered} 1 \mathrm{~A} \\ (0 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ (50 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 3 \mathrm{~A} \\ (100 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ (150 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 5 \mathrm{~A} \\ (200 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} \\ (250 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 8 \mathrm{~A} \\ (450 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 9 \mathrm{~A} \\ (600 \mathrm{~Pa}) \\ \hline \end{gathered}$	$\begin{gathered} E 1200 \\ (1200 \mathrm{~Pa}) \end{gathered}$
	Wind load resistance windows, max. test pressure ${ }^{15}$ EN 12211; EN 12210	$\begin{gathered} 1 \\ (400 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 2 \\ (800 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 3 \\ (1200 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 4 \\ (1600 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 5 \\ (2000 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} \text { Exxx } \\ (>2000 \mathrm{~Pa}) \end{gathered}$	
	Wind load resistance windows to frame deflection ${ }^{(5)}$ EN 12211; EN 12210	$\begin{gathered} \mathrm{A} \\ (\mathrm{~s} \sqrt{1} 150) \end{gathered}$				$\begin{gathered} B \\ (\leq 1 / 200) \end{gathered}$			$\begin{gathered} \text { C } \\ (\leqslant 1 / 300) \end{gathered}$		
	Wind load resistance doors, max. test pressure ${ }^{\text {(5 }}$ EN 12211; EN 12210	$\begin{gathered} 1 \\ (400 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 2 \\ (800 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 3 \\ (1200 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 4 \\ (1600 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 5 \\ (2000 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} \text { Exxx } \\ (\geqslant 2000 \mathrm{~Pa}) \end{gathered}$	
	Wind load resistance doors to frame deflection ${ }^{\text {(5] }}$ EN 12211; EN 12210	$\underset{(s 1 / 150)}{A}$				$\begin{gathered} \text { B } \\ (\$ 1 / 200) \end{gathered}$			$\underset{(\varsigma 1 / 300)}{\text { C }}$		
SAFETY											
	Burglar Resistance EN 1627-1630	RC 1				RC 2			RC 3		

This table shows possibie classes and values of pertormances. The values indicated in orange are the ones relevant to this system
(1) The Uf-waue masuinex the heat fow The lawe the Ulvaive the better the thermad insdation of the trame
(3) The air fionthest test meagres the volume of air that would pass troucth a closed window at a certain air pressu
(4) The water tightress test involves appiying a unitorm water spray at increasing air pressure unti water penetrates the window

(6) The burolar resstance is tested by statstikal and dmamic loads, as well as by simuated attempts to break in using specifed tools.

TOGETHER FOR BETTER

REYNAERS ALUMINIUM NV/SA

Oude Liersebaan $266 \cdot$ B-2570 Duffe
$t+3215308500 \cdot f+3215308600$
www.reynaers.com - info@reynaers.com
06/2019-0HO.11C2.00 - Publisher Responsible at Law: Reynaers Aluminium NV, Oude Liersebaan 266, B-2570 Duffel

SLIMLINE 38			
TECHNICAL CHARACTERISTICS			
Design variants	CLASSIC	CUBIC	FERRO
Min. visible width inward opening window	33.5 mm	33.5 mm	33.5 mm
	23 mm	22 mm	21.5 mm
Min. visible width outward opening window	29 mm	-	18.5 mm
	60.5 mm	-	60.5 mm
Min. visible width inward opening window-door	33.5 mm	33.5 mm	59.5 mm
	52.5 mm	52.5 mm	52.5 mm
Min. visible width outward opening window-door	29 mm	-	18.5 mm
	82 mm	-	82 mm
Min. visible width T-profile	48 mm	48 mm	48 mm
Overall system depth window	99 mm	76 mm	76 mm
	86 mm	75 mm	72 mm
Rebate height	13.5 mm	13.5 mm	13.5 mm
Glass thickness	up to 55 mm	up to 55 mm	up to 55 mm
Glazing method	dry glazing with EPDM or neutral silicones		
Thermal insulation	omega-shaped fibreglass reinforced polyamide strips (frame 40 mm - vent 32 mm)		
High Insulation variant (HI)	available	available	available

PERFORMANCES

	ENERGY										
	Thermal Insulation ${ }^{\text {(1) }}$ EN ISO 10077-2	Uf-value down to $1.7 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ depending on the frame/vent combination and the glass thickness. Uw of less than $1.4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for a standard window section ${ }^{(2)}$									
	COMFORT										
	Acoustic performance ${ }^{(3)}$ EN ISO 140-3; EN ISO 717-1	$R_{w}\left(C ; C_{t}\right)=38(-1 ;-4) d B / 45(-1 ;-5) d B$, depending on glazing type									
	Air tightness, max. test pressure ${ }^{(4)}$ EN 1026; EN 12207	$\begin{gathered} 1 \\ (150 \mathrm{~Pa}) \end{gathered}$		$\begin{gathered} 2 \\ (300 \mathrm{~Pa}) \end{gathered}$			$\begin{gathered} 3 \\ (600 \mathrm{~Pa}) \end{gathered}$			$\begin{gathered} 4 \\ (600 \mathrm{~Pa}) \end{gathered}$	
	Water tightness ${ }^{(5)}$ EN 1027; EN 12208	$\begin{gathered} 1 \mathrm{~A} \\ (0 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ (50 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 3 \mathrm{~A} \\ (100 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ (150 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 5 \mathrm{~A} \\ (200 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} \\ (250 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 7 \mathrm{~A} \\ (300 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ (450 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} 9 \mathrm{~A} \\ (600 \mathrm{~Pa}) \end{gathered}$	$\begin{gathered} E \\ (1200 \mathrm{~Pa}) \end{gathered}$
	Wind load resistance, max. test pressure ${ }^{(6)}$ EN 12211; EN 12210			$\underset{(800 \mathrm{~Pa})}{2}$		$\begin{gathered} 3 \\ (1200 \mathrm{~Pa}) \end{gathered}$			$\begin{gathered} 5 \\ (2000 \mathrm{~Pa}) \end{gathered}$		$\begin{aligned} & x \times x \\ & 000 \mathrm{~Pa}) \end{aligned}$
	Wind load resistance to frame deflection ${ }^{(6)}$ EN 12211; EN 12210	$\underset{(s 1 / 150)}{A}$			$\begin{gathered} \text { B } \\ (\leqslant 1 / 200) \end{gathered}$				$\underset{(\$ 1 / 300)}{C}$		
	SAFETY										
	Burglar resistance ${ }^{(7)}$ EN 1628-EN 1630; EN 1627	RC1			RC2				RC3		

This table shows possible classes and values of performances. The values indicated in red are the ones relevant to this system.
(1) The Uf-value measures the heat flow. The lower the Uf-value, the better the thermal insulation of the frame.
(2) Window dimension of $1.23 \mathrm{~m} \times 1.48 \mathrm{~m}$, with glass of $1.1 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
3) The sound reduction index (Rw) measures the capacity of the sound reduction performance of the frame.
4) The air tightness test measures the volume of air that would pass through a closed window at a certain air pressure
6) The wind load resistance is a measure of the profile's struter spray at increasing air pressure until water penetrates the window.

There are up to five levels of wind resistance (1 to 5) and three strength and is tested by applying increasing levels of air pressure to simulate the wind force.
7) The burglar resistance is tested by static and dynamic loads, as well as by simulated attempts to break in using specified tools. This variant requires specific burglar resistance accessories.

ROCK 60

- Technical Characterestics

Frame	Depth	61 mm -to- 74 mm
	Height	62 mm -to-130 mm
Sash	Depth	39 mm -to- 71 mm
	Height	57 mm -to- 87 mm
Max Glass Thickness	Up to 44 mm	
Max Sash Weight	Up to 180 kg	
Sealing Type	EPDM gasket with central gasket	

Complies with European norm hEN 1435-1

Air Permability	(Class 4) up to 600 pa
Water Tightness	(Class E900) up to 900 pa
Resistance to wind load	(Class C4) up to 1600 pa

- Used for doors and windows with large openings to obtain a wide view.
- Concealed opening frame that makes fixed and hinged panels have the same appearance from the outside (optional).
- All accessories can be adjusted and fixed with set screws.

SONATA 45

- Used for doors and windows with medium to large openings.
- A full range of accessories available for the various types of door and window openings.
- Wide variety of frames and sashes.
- Wide range of locking systems and multi locking points.
- All accessories can be adjusted and fixed with set screws.

SAMBA 40

- Technical Characterestics

Frame	Depth	40 mm -to-50 mm
	Height	47 mm -to-101 mm
Sash	Depth	40 mm
	Height	67 mm -to- 83 mm
Max Glass Thickness	Up to 24 mm	
Max Sash Weight	Up to 80 kg	
Sealing Type	EPDM gasket	

- Complies with European norm hEN 1435-1

Air Permability	(Class 4) up to 600 pa
Water Tightness	(Class E1050) up to 1050 pa
Resistance to wind load	(Class C4) up to 1600 pa

- Ideal solution for small to medium openings and economic resdential buildings.

- Same profile can be used as frame or sash (optional).
- All accessories can be adjusted and fixed with set screws.

TENDU 120

- Technical Characterestics

Frame	Depth	98 mm -to-134 mm
	Height	52 mm
Sash	Depth	40 mm
	Height	86 mm
Max Glass Thickness	Up to 24 mm	
Max Sash Weight	Up to 200 kg	
Sealing Type	Perimetrical, with two rows of high- denisty brushes EPDM gaskets for tilt and slide.	

- Complies with European norm hEN 1435-1

Air Permability	(Class 3) up to 600 pa
Water Tightness	(Class 6A) up to 250 pa
Resistance to wind load	(Class B3) up to 1200 pa

- Used for doors and windows with large openings to obtain a wide view.
- Wide range of locking systems with multi locking points and anti-lift blocks.
- Compatible with GOS lift \& slide accessories.
- All accessories can be adjusted and fixed with screws.

JUMBO 100

- Complies with European norm hEN 1435-1

Air Permability	(Class 3) up to 600 pa
Water Tightness	(Class 8A) up to 450 pa
Resistance to wind load	(Class B2) up to 800 pa

- Used for doors and windows with large openings.
- Wide variety of frames and sashes.
- Wide range of locking systems and multi locking points and anti-lift blocks.
- All accessories can be adjusted and fixed with set screws.

ScreenLine̊

$44 \mid$

$46 \mid$

Motorized Retractable Wall Screen "Inside Jamb" Installation System With Standard Side Track (V2A) Inside Jamb Above Header - (IJUH)
 FOR ILLUSTRATION PURPOSES ONLY - NOT DRAWN TO SCALE

Crcator:	Date:	Revision:
NDR	$10 / 04 / 2004$	Rev: 01
Drawing Tite:		
PSEXECINSTALLIJUH01(C)		
2010 Phantom Mfg. Intl Ltd.	NTS	

OUTSWING DOOR WITH TRIM SILL

FOR ILLUSTRATION PURPOSES ONLY

Creator:	Date:	Revision:
NDR	$03 / 14 / 2006$	Rev:
Drawing Title:		
PSPH AN INSTOUT SWING-TRIM01		
	As Shown	

Retractable Door Design Specifications

 c/w Latching HandleExternal Assembled View
For Illustration Purposes Only - Not Drawn to Scale
All Dimensions Are Shown In Inches and Millimeters In Brackets

Creator:	Date:	Revision:
NDR	$03 / 08 / 16$	Rev: 02
Drawing Title:		
PSLEGACYPRODDESIGNSPEC01		
C 2016 Phantom Mfg. Intl Ltd.	NTS	

Retractable Door Design Specifications

c/w Magnet Latch System

Detail Views
All Dimensions Are Shown In Inches Millimeters In Brackets

вотtom View

Retractable Door Design Specifications

 c/w Magnet Latch System
External Assembled View

For Illustration Purposes Only - Not Drawn to Scale
All Dimensions Are Shown In Inches and Millimeters In Bracket

IN RELATION
(HEAD VIEW)

Technical Specifications

DomusLift Aluminium
 DomusLIIrT Steel
 Pag. 4
 Pag. 16

Hydraulic

- Complying with European 2006/42/EC Machinery Directive
- Machine roomless (MRL) hydraulic drive
- Direct telescopic suspension or roping version
- 1 or 2-piece ram
- Load up to 400 kg
- Stops: up to 7; Travel: 12 m
- Pit starting from 100 mm , headroom from 2250 mm
- Speed: $0.15 \mathrm{~m} / \mathrm{s}$
($0.30 \mathrm{~m} / \mathrm{s}$ max outside the European Community)
- Rated power: 2.2 kW

XL model

- Headroom: 2500 mm min
- Stops: up to 7; travel: 17 m
- Load: 450 kg
- Maximum car dimensions: $1200 \times 1500 \mathrm{~mm}$
- Load up to 400 kg
- Stops: 7; Travel: 20 m
- Pit: 200 mm; Headroom: 2500/2600 mm
- Speed: $0.15 \mathrm{~m} / \mathrm{s}$
($0.30 \mathrm{~m} / \mathrm{s}$ max outside the European Community)
- Rated power: 0.5 kW

DomusLifr Aluminium/Steel Gearless

Electric gearless with counterweight

- Complying with European 2006/42/EC

Machinery Directive

- Machine roomless (MRL)
- Gearless machine, with counterweight

Masonry shaft
Net dimensions between finished walls

Metal shaft structure

 Fixing of at least 3 uprights at pit,headroom and each floor level

Top cantilevered car sling

Swing doors

Automatic sliding doors

Bottom cantilevered car sling

Electric gearless
with counterweight

DomusLift Aluminium

1 C	1C／1	1C／2	1C／3	1C／4	1C／5	1C／6	1C／7	1C／8	1C／12
cw	830	830	830	1030	1030	1030	830	1130	1030
CD	830	1030	1300	1300	1030	830	1200	1400	1400
sw	1160	1160	1160	1360	1360	1360	1160	1460	1360
SD	950	1150	1450	1450	1150	950	1350	1550	1550
DO	750	750	750	950	950	950	750	900	950
kg max	300	300	340	400	340	340	300	400	400
植 max	梑	＊${ }_{\text {蚞 }}$	和森	和＊＊＊＊＊	＊＊＊	＊＊＊	$\%^{\text {k }}$ 材	蚛＊＊＊＊＊	称＊＊＊＊＊

1L	1L／1	1L／2	1L／3	1L／4	1L／5	1L／6	1L／7
CW	830	1030	1300	1300	1030	830	830
CD	830	830	830	1030	1030	1030	1200
SW	1030	1230	1530	1530	1230	1030	1030
SD	1106	1106	1106	1306	1306	1306	1476
DO	750	950	950	950	950	750	750
kg max	300	300	340	400	340	340	400
	蚋	称的	䄱稃	的称的	袆裸	种种	

2A	2A／1	2A／2	2A／3	2A／4	2A／5	2A／6	2A／7	2A／9
CW	830	830	830	1030	1030	1030	1200	1200
CD	830	1030	1300	1300	1030	830	830	1200
SW	1106	1106	1106	1306	1306	1306	1476	1476
SD	975	1175	1445	1445	1175	975	975	1345
DO1	750	750	750	950	950	950	950	950
DO2	750	950	950	950	950	750	750	950
kg max	300	300	340	400	340	340	400	400
祖 max	秋	裸为	秷禹		＊蚆	棌称	袆秋	家株林

2P	2P／1	2P／2	2P／3	2P／4	2P／5	2P／6	2P／7	2P／8
CW	830	830	830	1030	1030	1030	830	1130
CD	830	1030	1300	1300	1030	830	1200	1400
SW	1160	1160	1160	1360	1360	1360	1160	1460
SD	920	1120	1390	1390	1120	920	1290	1490
DO	750	750	750	950	950	950	750	900
kg max	300	300	340	400	340	340	300	400
\％${ }^{6}$ max	种	种蚛			裸棌	蚋蚛	あ＊＊${ }^{\text {a }}$	

4

DomusLift Aluminium

1C－2AT	1C／2	1C／3	1C／4	1C／5	1C／7	1C／10
CW	830	830	1030	1030	830	980
CD	1030	1300	1300	1030	1200	1200
SW	1340	1340	1520	1520	1340	1490
SD	1385	1685	1685	1385	1585	1585
DO	650	650	750	750	650	750
kg max	300	340	400	340	300	400
和 max	种秋	秋炏	和 ${ }^{\text {＊}}$ 林	䗇冓	称䄱	\％＊＊＊＊

1L－2AT	1L／2	1L／3	12／5
CW	1030	1300	1030
CD	830	830	1030
SW	1640	1640	1640
SD	1340	1340	1540
DO	850	850	850
kg max	300	340	340
柁 max	秋棌	秋秋	秛秋

2P－2AT	2P／2	2P／3	2P／4	2P／5	2P／7
CW	830	830	1030	1030	830
CD	1030	1300	1300	1030	1200
SW	1340	1340	1520	1520	1340
SD	1472	1742	1742	1472	1642
DO	650	650	750	750	650
kg max	300	340	400	340	300
格 max	种中	秋炏	和＊＊＊	种秋	棌稂

DomusLIfT Aluminium／Steel Gearless

1C－2AT				
CW	830	980	1030	1130
CD＊	1300	1200	1300	1400
SW	1310	1460	1510	1610
SD	1550	1450	1550	1650
DO	750	800	850	900
kg max	340	400	400	450
植 max	秥柣	あ＊＊＊＊＊		郒＊＊＊木

2A－2AT			
CW	1030	1030	1130
CD＊	1200	1300	1400
SW	1596	1596	1696
SD	1466	1566	1666
DO1	750	750	850
DO2	800	850	850
kg max	400	400	450
衸 max	快炏炏	种秋	秋秋大

2P－2AT				
CW	830	980	1030	1130
CD＊	1300	1200	1300	1400
SW	1310	1460	1510	1610
SD	1652	1552	1652	1752
DO	750	800	850	900
kg max	340	400	400	450
16 max	秥＊${ }^{\text {ck＊}}$	あ＊木木木木		祸株林

1L－4AO	
cW	1130
CD＊	1130
sw	1350
SD	1696
DO	800
kg max	400
＊${ }^{\text {max }}$	林林

28

DomusLift Aluminium

1C－2AT	1C／2	1C／3	1C／4	1C／5	1C／7	1C／10
CW	830	830	1030	1030	830	980
CD	1030	1300	1300	1030	1200	1200
SW	1160	1160	1350	1350	1160	1310
SD	1290	1590	1590	1290	1490	1490
DO	650	650	750	750	650	750
kg max	300	340	400	340	300	400
校 max	种秋	䅹秋		中梑＊	稆棌	（ ${ }^{\text {＊}}$

1L－2AT	1L／2	1L／3	1L／5
CW	1030	1300	1030
CD	830	830	1030
SW	1460	1460	1460
SD	1240	1240	1440
DO	850	850	850
kg max	300	340	340
郒 max	种种	种种	＊蚆

2P－2AT	2P／2	2P／3	2P／4	2P／5	2P／7
CW	830	830	1030	1030	830
CD	1030	1300	1300	1030	1200
SW	1160	1160	1350	1350	1170
SD	1382	1652	1652	1382	1552
DO	650	650	750	750	650
kg max	300	340	400	340	300
植 max	蚆冓		程森材	蚋＊	种标

Disponibill cabine con dimensioni intermedie． Cars with intermediate dimensions are available． Cabines avec dimensions intermoyennes sont disponibles．
Zwischenmasse der ZWischenmasse der
Kabinen sind verfuegbar． Cabinas disponibles con dimensiones medianas． В наличии кабины с промемуточными размерами．

10

Ouverture Intérieure

Porte-fenêtre 1 et 2 vantaux

Ensemble menuisé fenêtre française

Fenêtre basculante

Ouverture Extérieure

Fenêtre à l'anglaise 1 vantail

Fenêtre à l'italienne

Fenêtre à projection

Ensemble menuisé fenêtre italienne

Ensemble menuisé fenêtre ouverture extérieure

Géode Isolation renforcée serreur filant : mur-rideau, ouvrant caché à l'italienne (MX)

- Application :
- Elévation (échelle 1/50) :

Coupe verticale 1 A

Coupe horizontale 1 B

- Applications:

- Coupes (échelle 1/3):

Coupe verticale

Coupe horizontale

Soléal : chassis à l'italienne (fY)

Dimensions Maxi par Ouvrant
Largeur $=1500 \mathrm{~mm}$
Hauteur $=1750 \mathrm{~mm}$
Poids Maxi par Ouvrant 100 kgs

Dimensions d'entrebaillemment

Coupe verticale

Our Projects

daral-handasah shair and partners

㘳 1 TMG

Al-Rehab

$64 \mid$

65 |

67 |

هيئة المجتمعات العمرانية الجديدة
New Urban Communities Authority

-2

$71 \mid$

76 |

$78 \mid$

79 |

$1 \underset{\text { Umberto I-Cairo }}{\text { Italian Hospital }}$

${ }^{81} \mid$

88

$$
92
$$

ADMINISTRATIVE OFFIGE

IE

$\frac{\text { RONT }}{\text { VITA }}$

خبرة ألمانيتبأيديمصرية

|

Abdullah AlOthaim
Markets

101 |

QDQ
hospitality
\approx
CORAL SEA
BEACH RESORT

References

Head quarter : villa 25 south academy, north teseen st, New Cairo. (Facing Citibank).
Technical office : 21A El Obour buildings, Salah Salem Street, Cairo. (facing Panorama 6th October).
Factory : 49 Elzohour street, Industrial Zone, El-Herafeiin.
Tel
: +2-02-240 47022
Cell
: +2-010 60019933
Website
: www.triflexegypt.com
e-mail
: info@triflexegypt.com

